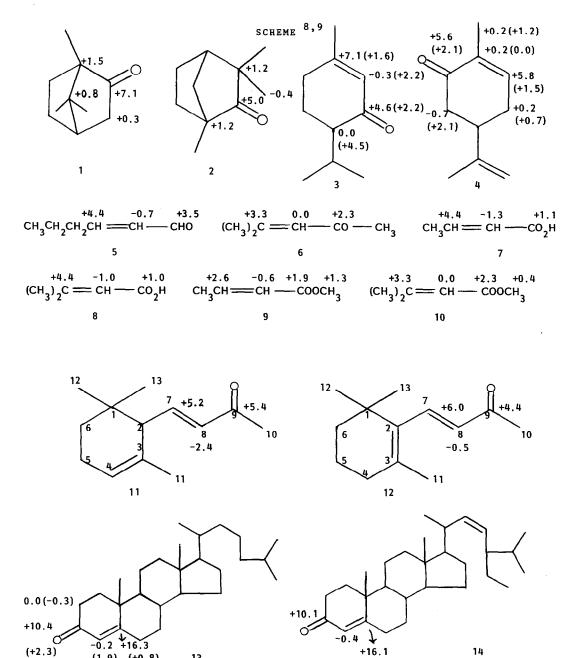
NMR SPECTRAL STUDIES XI - TITANIUM TETRACHLORIDE - INDUCED SHIFTS ON THE C-13 NMR SPECTRA OF CARBONYL COMPOUNDS^{1,2}

Ajay K. Bose and P.R. Srinivasan

Department of Chemistry and Chemical Engineering Stevens Institute of Technology Hoboken, New Jersey 07030, U.S.A.


(Received in USA 13 January 1975; received in UK for publication 1 April 1975)

The usefulness of titanium tetrachloride as an nmr shift reagent was recently reported from this laboratory³. In a subsequent communication⁴, we presented a comparison of the shifts induced by Eu (fod)₃ and TiCl₄ on the C-13 nmr spectra of some β -lactams and demonstrated that the latter reagent could be conveniently employed for shift studies on the C-13 nmr spectra of carbonyl compounds. In the course of subsequent studies on a number of natural products we have observed interesting shifts for conjugated carbonyl systems. These findings and spectral assignments of a few natural products are described here.

Upon addition of TiCl₄ to a CDCl₃ - solution of saturated ketones (conveniently in the nmr sample tube), a large downfield shift of the carbonyl carbon and moderate downfield shifts for the adjacent carbons are noticed in the C-13 nmr spectrum⁶; more remote carbon atoms show negligible shifts in either direction. Shifts observed for camphor and fenchone are shown in the Scheme.

In the case of α, β -unsaturated carbonyl compounds (ketones and aldehydes), addition of TiCl_µ caused large downfield shifts for the carbonyl and the β -carbon atoms while the α -carbon atoms showed only very small shifts, in either direction. This could be explained by assuming that upon addition of TiCl_µ to solutions of conjugated ketones and aldehydes, the dipolar canonical form (I) makes more significant contribution; consequently a change of distribution of electron density occurs to a great extent at the carbonyl and β -carbon atoms and to a limited extent at the α -carbon:

$$\begin{array}{cccc} -C = C - C = 0 & \longrightarrow & -C - C = C - 0 \\ 1 & 1 & 1 & & & & 1 & 1 \\ \end{array}$$
(1)

1: Camphor; 2: Fenchone; 3: Piperitone; 4: Carvone; 5: 2-Hexenal; 6: Mesityl oxide; 7: Crotonic acid; 8: 2,2-Dimethylacrylic acid; 9: Methyl crotonate; 10: Methyl 2,2dimethylacrylate; 11: a-lonone; 12: B -lonone; 13: 4-Cholesten-3-one; 14: 4,22-Stigmastadien-3-one.

(1.9) (+0.8)

13

Even α , β -unsaturated acids and esters show large downfield shifts for the β -carbons although the magnitude of the shifts of the carbonyl carbon is considerably reduced probably due to possible chemical reaction of TiCl₄ in the case of carboxylic acids and complexing of TiCl₄ with the carbonyl as well as alkoxyl group in the case of esters. Shifts observed for a variety of compounds like α , β -unsaturated aldehyde, ketones, acids and esters are given in the Scheme; for the sake of comparison, shifts induced by Eu (fod)₃ are also included for three such compounds (piperitone, carvone and 4-cholesten-3-one). It may be noted that TiCl₄-induced shifts are larger in magnitude and more diagnostic for the β -carbon atoms. However, in the case of α - and β -ionones, large downfield TiCl₄-induced shifts were observed for the α -carbon atoms while smaller upfield shifts were noticed for the β -carbons, on the assumption that the original C-13 chemical shift assignments made by Roberts et al. ⁵ were correct. That the extended conjugation in these compounds did not materially alter their behaviour towards TiCl₄ was proved by the fact that the γ - and δ -carbon atoms showed negligible shift. We therefore reinvestigated the earlier C-13 chemical shift assignments for the C₇ and C₈ of these compounds.

In the proton nmr spectra⁷ of α - and β -ionones it was noticed that the C₇ and C₈ protons appeared respectively at 6.60[§] and 6.06[§] in α -ionone and at 7.28[§] and 6.11[§] in β -ionone. Single-frequency proton decoupled C-13 nmr spectra of α -ionone showed that upon irradiation of proton frequency at 6.60[§], the signal at 147.8[§] was an intensified singlet signal showing it to be due to C₇; irradiation of proton frequency at 6.06[§] sharpened and intensified the resonance at 133.08[§] proving it to be due to C₈. Similarly, single-frequency proton decoupled C-13 nmr spectra of β -ionone showed that the signals at 142.0[§] and 132.4[§] corresponded to the C₇ and C₈ carbon atoms respectively. These assignments, which are the reverse of those made by Roberts et al.⁵, are in agreement with the predictions made on the basis of TiCl₄-induced shifts observed for these compounds.

Acknowledgment

We thank Stevens Institute of Technology for the support of this research and the Hayden Foundation for a generous grant towards the purchase of the Bruker HX-90 NMR Spectrometer used for this research.

REFERENCES

- For part X, see A.K. Bose, M. Sugiura and Srinivasan, *Tetrahedron Letters*, 000 (1975); (in press); for Part IX, see Ref. 4.
- 2. Presented partly at the IUPAC Meeting on Natural Products, Ottawa, Canada, June 26-27, 1974.
- 3. A.K. Bose, P.R. Srinivasan, and G. Trainor, J. Amer. Chem. Soc., 96, 3670 (1974).
- 4. A.K. Bose and P.R. Srinivasan, J. Magnetic Resonance, 15, 592 (1974).
- M. Jautelat, J.B. Grutzner, and J.D. Roberts, Proc. of National Academy of Sciences (USA), 65, 288 (1970).
- C-13 nmr spectra were recorded by Pulse Fourier Transform technique on a Bruker HX-90 NMR Spectrometer employing an internal ²H lock with TMS as internal reference.
- 7. NMR Spectra Catalog, Varian Associates, U.S.A., 1963, Vol. 2.
- Shifts (in ppm) upon addition of 25% by weight TiCl₄; values in parenthesis are shifts upon addition of 25% by weight Eu (fod)₃. Positive numbers denote shift to lower magnetic field; shifts of 0.2 ppm or less have been omitted.
- C-13 chemical shifts for compounds listed here are to be found in "C-13 NMR Spectroscopy", J.B. Stothers, Academic Press, N.Y., (1972).